
Demystifying the
Software Supply
Chain’s Known

& Unknown Risks

1 | Cheat Sheet myrror.security

https://myrror.security/

. Introduction

 .The Software Supply Chain Security Landscape

. . . .Understanding the Known and Unknown Risks In the Supply Chain

 .

. .Unknown Risks and Emerging Threats

. .Supply Chain Security Best Practices Cheat Sheet

. Conclusion

 .Major Supply Chain Attacks

Table of Contents

myrror.security2 | Cheat Sheet

3

7

9

10

12

14

18

4

Handling Known Risks With SCA Tools

https://myrror.security/

myrror.security3 | Cheat Sheet

Introduction
The software you rely on is built on a complex network of

connected components, each a potential weak link. This

"software supply chain" presents a dynamic challenge: a

constantly evolving web of known and unknown security

vulnerabilities. Ignoring these risks is a gamble. This

cheat sheet is intended to empower application security

personnel to:

Understand the concrete threats lurking within the

software supply chain

Grasp the critical importance of addressing

unknown risks alongside the documented ones

Discover actionable strategies to fortify applications

against both known and unknown risks

Before delving into these a bit deeper, let’s explore a

few of the major supply chain attacks that have

occurred in the past.

https://myrror.security/

Major Supply Chain Attacks

myrror.security4 | Cheat Sheet

NotPetya

$10 billion

Estimated damages
exceeding $10 billion,
targeting critical
infrastructure and
causing widespread
data loss and system
disruptions.

Kaseya VSA

up to $1billion

Ransomware attack
affecting thousands of
businesses globally,
leading to estimated
losses of $500 million
to $1 billion.

SolarWinds

$1 billion

Widespread supply
chain attack
compromising
government agencies
and private
companies, incurring
damage estimated at
$1 billion.

Revenue Loss:

https://myrror.security/

myrror.security5 | Cheat Sheet

Equifax

147 million americans

Massive data breach exposing the
personal information of 147 million
Americans, severely damaging
brand reputation and trust.

Marriott International

500 million guests

Estimated damages exceeding $10
billion, targeting critical
infrastructure and causing
widespread data loss and system
disruptions.

Yahoo

3 billion accounts

Massive data breach compromising
3 billion accounts, eroding user
trust and leading to a steep decline
in market value.

Target

40 million credit cards

Data breach of 40 million credit and
debit cards, triggering
investigations and damaging
customer confidence.

Reputation Loss:

https://myrror.security/

myrror.security6 | Cheat Sheet

Codecov attack:

Potential for widespread downstream impact on
organizations relying on affected dependencies.

UCSF research software attack:

Breaching trust in the integrity of scientific research
and data.

Airbus supplier attack:

Highlighting the importance of securing even indirect
links in the supply chain.

Malicious code attacks sneak in through trusted
third-party tools, like hidden weapons within
seemingly harmless packages.

This approach makes them incredibly difficult to
detect, and — once triggered - the damage can be
significant, impacting not just your organization but
all those relying on your software. A few examples of
such attacks:

SolarWinds

Kaseya

Codecov

3CX

Ledger dApp

CyberLink

Recent Additions (2023):

Sophisticated Malicious Code
Attacks:

https://myrror.security/

The Software Supply Chain Security

Landscape

myrror.security7 | Cheat Sheet

The Software Supply Chain Security Threat Landscape
encompasses the various risks and threats that pose a
danger to the integrity and security of your third-party
code or your own CI/CD process.

To assemble it, one must identify and understand the
potential vulnerabilities and attacks that can
compromise software integrity throughout every step of
the chain. These threats can include attacks - where
malicious actors inject malware and tamper open source
packages which are later added into the supply chain,
as well as vulnerabilities in third-party dependencies.

Before moving on, let’s focus on distinguishing the
difference between two important terms:

The Difference Between Vulnerabilities & Supply Chain Attacks

An attack is a deliberate malicious
activity that lacks specific CVE
identification number, and this is
untracked by standard SCAs and
public DBs. Once discovered, an
attempt to exploit it has usually
already taken place.

Malicious Code Attack

Breached  

Executable

Production

A vulnerability is (with a few edge
cases) a non-deliberate mistake,
which is identified by a CVE and
recorded in public databases. It’s
usually possible to defend against it
before it has been exploited.

Vulnerability Exploit

Vulnerable  

Executable

Production

Attacker

https://myrror.security/

myrror.security8 | Cheat Sheet

To paint things in a little more picturesque way, comparing
supply chain attacks to cunning thieves and vulnerabilities
to broken locks feels apt.

Attacks infiltrate seemingly trustworthy third-party software
components and the pipelines that get your software where
it needs to go and allow for malicious activity. This makes
detection extremely difficult as the code is hidden and
disguised. When triggered, the attack can harm not only
your organization but potentially your customers as well as
any other entities using the same components. To prevent
such attacks, strong vigilance and thorough analysis of
third-party code and binaries are essential.

Vulnerability exploits, on the other hand, target weaknesses
present in your own systems, packages or your own code.
Some are known vulnerabilities, like cracks in your
defenses, while others might be zero-days or too complex
to exploit readily.

The sheer number of vulnerabilities can overwhelm security
teams, leaving attackers plenty of potential entry points if
patching efforts are not done properly. This phenomenon,
often referred to as “alert fatigue”, can cause severe
oversights and result in major vulnerabilities remaining
unpatched for long periods of time.

Organizations need to be aware of this threat landscape
and implement proactive measures such as binary-to-
source analysis (read more about it in the “Security Best
Practices” section of this guide), supply chain verification,
continuous monitoring, and threat intelligence sharing to
mitigate these risks and protect their software supply chain
from potential security breaches.

By understanding the risks and implementing robust
security practices, we can build a more resilient software
supply chain and protect our valuable digital assets.

The Difference Between Vulnerabilities & Supply Chain Attacks

https://myrror.security/

Understanding the Known and

Unknown Risks in the Supply Chain

myrror.security9 | Cheat Sheet

This guide distinguishes between known and unknown risks,
shedding light on their unique characteristics and implications.

Known risks are those vulnerabilities and threats that have been
identified, documented, and are well-understood by the
cybersecurity community. While these known risks can be
daunting, they can also be effectively addressed through regular
package version updates, vulnerability management, and smarter
third-party software choices.

More importantly, though, this guide chooses to shine a light on the
more challenging (and less discussed) side of things - the
unknown risks inherent to the software supply chain.

These are the risks that are harder to discover and harder to
address; They can originate from various sources, such as insider
threats, malicious actors injecting malicious code into the supply
chain or a host of techniques used to compromise the distribution
portion of your software’s delivery journey.

We would like to stress again that unknown risks pose a significant challenge due
to their elusive nature, making them harder to identify and mitigate effectively.

Before we dive deeper into what they look like in practice, though, let’s take a look
at the known risks and touch on how to mitigate them. This will help illustrate the
difference between the two, and make it easier to discuss the unknown risks.

https://myrror.security/

myrror.security10 | Cheat Sheet

Handling Known Risks with SCA Tools

Software composition analysis (SCA) tools act as security scanners for your software

stack, hunting down vulnerabilities lurking in your third-party code.

They usually work in two steps:

By actively using SCA and implementing these combined strategies,
you can effectively address the known threats lurking within your
software supply chain.

Dependency
Mapping

Continuous
Monitoring

Updating
Vulnerable
Dependencies

Planning
remediation

Vulnerability
Database Lookup

SCA tools scan your code to identify all the

third-party libraries and open-source

components used. This comprehensive map

reveals the hidden connections and potential

risk points in your software. This is usually

done by scanning the manifest or BOM - Bill of

Materials of your software.

Armed with the dependency map, SCA tools

cross-reference each component against

known vulnerability databases. They instantly

flag any vulnerable library, alerting you to take

action.

While SCA helps detect known threats,

complete mitigation requires additional steps:

1

3 4 5

2

Stay ahead of newly

discovered vulnerabilities by

setting up ongoing scans and

alerts to address emerging

threats promptly.

Patching outdated libraries

with fixes or switching to

secure alternatives is crucial

to eliminate vulnerabilities.

Just updating a library might

cause unexpected effects - all

patching should be planned

and take into consideration all

the potential side effects the

update might have.

https://myrror.security/
https://myrror.security/product/code-aware-sca/

myrror.security11 | Cheat Sheet

4 Reasons Why SCA Tools Aren’t Enough

SCAs Unnecessarily Focus On Every Vulnerability

Not every vulnerability is exploitable and important. This causes the

aforementioned phenomenon of “alert fatigue”, where security personnel are

bombarded with alerts without being able to properly address all of them.

By Extension, SCAs Do Not Automatically Prioritize Vulnerabilities

It might seem as if they do at first glance, since every vulnerability has a score, but

that is just the “raw” score given to it by the vulnerability databases or the

governing body - it has no correlation with its exploitability, reachability or business

impact.

SCAs Don’t Detect Unknown Risks

As mentioned above, SCA tools cross-reference each component against known

vulnerability databases. Hence, unknown risks remain unknown and pose a

greater danger to organizations.

SCAs Offer Problematic Remediation Advice

Often, SCA tools provide remediation advice that is not targeted, and also doesn't

take into account the vulnerabilities that might be introduced by the remediation

effort.

Although SCA tools are needed, the lack in a few different ways:

Now that we’ve explored the ways known risks can be
mitigated, let’s jump back into the unknown risks side of
the equation.

https://myrror.security/

Unknown Risks and Emerging Threats

myrror.security12 | Cheat Sheet

Generally speaking, we’ll refer to an unknown risk as something that traditional SCA tactics will
not capture. This is mostly due to the fact that these attacks are not clearly reported on in major
vulnerability databases - since they’re not vulnerabilities - but also, and more importantly,
because they are harder to detect and identify than traditional vulnerabilities due to their
heterogeneous nature.

These attacks take a few different forms, which can be roughly
categorized as follows:

Typosquatting

A malicious package masquerading to be another package by “squatting” its
namespace, often using similar words in its name or typos. A few examples:

Symfony - The popular PHP framework symfony had a typosquatting attack
performed against the symfony/process package - it was replaced with symfont/
process.

Dozens of packages at once in PyPi - Over 450 malicious PyPI python
packages were found installing malicious browser extensions to hijack
cryptocurrency transactions made through browser-based crypto wallets and
websites.

Dependency Confusion

A package masquerading to be another package by being uploaded, with the same
name, to a different distributor (relying on people downloading it by mistake). A few
examples:

PyTorch - A malicious dependency package (torchtriton) that was uploaded to
the Python Package Index (PyPI) code repository with the same package name
as the one PyTorch ships on the PyTorch nightly package index. Since the PyPI
index takes precedence, this malicious package was being installed instead of
the version from the official repository.

Apple, Microsoft & More - The attacker publishes malicious packages to public
code repositories, mimicking names of internal packages used in corporate
software. Unsuspecting developers may download these malicious packages,
thinking they are legitimate internal packages. This can lead to code execution
within a company's internal software systems.

https://myrror.security/
https://www.kernelmode.blog/typosquatting-malware-found-in-composer-repository/
https://www.bleepingcomputer.com/news/security/451-pypi-packages-install-chrome-extensions-to-steal-crypto/
https://pytorch.org/blog/compromised-nightly-dependency/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

myrror.security13 | Cheat Sheet

Malicious Code In the Repo

An attacker modifies the popular dependency to contain malicious activities as part
of the normal operation of the software. A few examples:

node-ipc Protestware — node-ipc is a popular package to help with inter-
process communication in Node. In protest of Russia's invasion of Ukraine, the
author of the package intentionally added malware on March 16th that targets
Russian and Belarusian IPs.The code attempts to geo-locate where it's running,
and if it discovers it is running with in Russia or Belarus, then it attempts to
replace the contents of every file on the system with a unicode heart character:

. In a more recent version, it instead just drops a file with a peace message on
the desktop.Vue.js and many other projects are affected.

Discord.dll — The discord.dll is an npm component which conducts sinister
activities that are hard to spot upfront. It also uses the legitimate Discord.js npm
dependency to potentially distract researchers from its otherwise nefarious
activities, which might cause it to appear like a legitimate Discord API package.
It is not.

CI/CD Attacks

Compromising the build process of specific pieces of software in order to affect any
downstream user of that software. A few examples:

SolarWinds - The attackers managed to modify a SolarWinds plug-in called
SolarWinds.Orion.Core.BusinessLayer.dll that is distributed as part of Orion
platform updates. The trojanized component is digitally signed and contains a
backdoor that communicates with third-party servers controlled by the attackers.
FireEye tracks this component as SUNBURST and has released open-source
detection rules for it on GitHub.

3CX - The attackers compromised a trading software's binary file, an employee
downloaded it and then the attackers moved laterally through the network.

Distribution Server Attacks

 An attack on the server in charge of delivering a piece of software to its customers.
A key example:

Jumpcloud - The threat actor compromised the cloud provider's commands
framework and used it for malicious data injection.

https://myrror.security/
https://www.lunasec.io/docs/blog/node-ipc-protestware/%20node-ipc
https://www.npmjs.com/package/@vue/cli-shared-utils
https://github.com/zlw9991/node-ipc-dependencies-list
https://blog.sonatype.com/discord.dll-successor-to-npm-fallguys-
https://www.csoonline.com/article/570191/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://github.com/fireeye/sunburst_countermeasures
https://github.com/fireeye/sunburst_countermeasures
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://jumpcloud.com/blog/security-update-june-20-incident-details-and-remediation%5C

Supply Chain Security Best Practices

Cheat Sheet

myrror.security14 | Cheat Sheet

Use an SCA Platform

By now you should understand why a software composition analysis is not only a
suggested - but required - portion of your security stack, and how it can be used to
automatically identify and track open-source components and their dependencies.
You also should understand the main disadvantages of traditional SCAs, and what
you should look for when acquiring such a platform.

Use Automated Prioritization

Using a tool dedicated to automating alert prioritization, ensuring the AppSec team
knows what to deal with first, makes sure you are working on the right thing at any
given point in time and remediating the most risky issues first. Great SCAs, by the
way, often take care of this part of the equation for you.

Rely on Package Attestations

Which will provide assertions about open source software development practices at
the package level, ensuring that the package is well-developed (see NIST’s
TACOS as an example framework). While attestations are great for making sure
your vendors are truthful with you, they are only a verification system for something
your provider says is true - not a bulletproof solution to package tampering.

Rely on Packages that Provide Provenance Data

Which lets users ensure that the package comes from the correct, reputable source
(see GitHub’s support for npmjs registry provenance here, based on SLSA, as an
example). This approach, like attestations, is a great way to learn that the software
came from where it said it did - but still does not guarantee that the original source
wasn’t somehow compromised as well.

https://myrror.security/
https://github.com/tacosframework
https://github.com/tacosframework
https://github.blog/2023-04-19-introducing-npm-package-provenance/
https://slsa.dev/attestation-model

myrror.security15 | Cheat Sheet

Perform Software Integrity Validation Based on Binary-to-Source
Analysis

Binary-to-Source code analysis refers to the practice of comparing the source code
and the binary artifacts of a piece of code, looking for any deviation between the
two. This process helps reveal trojanized packages and malicious code insertions
“hidden in plain sight”, making sure the integrity of the open-source packages you
use has been maintained.

The advantages of the binary-to-source analysis are numerous:

� Earlier Detection: This analysis acts as an early warning system, flagging
potential threats before they reach production, saving valuable time and
resourcesn

� Complete Code Visibility: Analyzing binaries sheds light on the inner workings
of compiled code and exposes malicious code attacks that might evade
detectionn

� Upstream Assurance: It verifies package integrity throughout the supply chain,
building trust in the packages you usen

� CI/CD Assurance: Running that same analysis on your own pipelines, can
ensure your build process integrity.

By integrating binary-to-source analysis into your security toolkit, you gain a
powerful ally in the fight against sophisticated software supply chain attacks,
ensuring the resilience and trustworthiness of your code.

Actively Manage Vendors and Third-Party Risk

While ensuring your developers do not use compromised packages is one step of
the way, you still need to carefully vet every software supplier before letting them
into your secure environments.

This also includes performing a diligent Dependency Management process,
Maintain a detailed inventory of third-party dependencies and libraries used in your
software. Regularly update them to include security patches and monitor for known
vulnerabilities.

Use Traditional DAST Tools

This will ensure - during the CI/CD process usually - that your web application’s
endpoints can “handle” various attack use cases (normally enumerating OWASP
and other frameworks’ cases on every single exposed web endpoint). By doing so,
you’re making sure that one of the most intuitive attack vectors is covered against
the majority of known attack methods, strengthening your posture significantly.

https://myrror.security/
https://myrror.security/binary-to-source-validation-and-keeping-up-with-an-undetectable-threat/

myrror.security16 | Cheat Sheet

Use Traditional Open-Source SAST Scanning Tools

Traditionally, these tools are not intended to scan your 3rd-party code and will be
tweaked for your own codebase. Looking for a platform that also scans 3rd-party
code is a great idea, and will enable you to check if the software you use by
extension (read: your 3rd-party code) also complies with the strict security
standards enforced on your own, 1st-party code.

We must note however that this approach still creates a lot of noise and false
positives due to the nature of the scan, which is often calibrated to detect
problematic coding practices in your own code, which might not apply to 3rd-party
code.

Plan for Incident Response

Incident response planning prepares you for the worst-case scenario, outlining
clear steps for containment, investigation, and recovery in case of a security
breach. By having a playbook ready, you can minimize damage and bounce back
attacks.

Secure your Build Environments

Ensure that your build environments are secure, stateless and isolated. Only
trusted personnel should have access, and regularly scan for malware and
vulnerabilities in your build tools and infrastructure.

Sign your Artifacts

Sign your software executables and updates to verify their authenticity. This
prevents tampering with the artifact during transit.

Focus on Container Security

If using containers, ensure container images are scanned for vulnerabilities as well
and follow best practices for securing container runtimes. In addition, make sure to
treat your container images just like the rest of your third-party code - just because
it’s packed into a container, doesn’t make it risk-free.

Create Secure Packaging Procedures

When packaging your software for distribution, use trusted and verified package
managers and repositories. Ensure packages are signed and verified before
deployment.

https://myrror.security/
https://myrror.security/product/breach-detection/
https://myrror.security/product/breach-detection/

myrror.security17 | Cheat Sheet

Use Continuous Monitoring

Point in time is not enough. Continuously monitor your software supply chain for
anomalies, unauthorized access, and suspicious activities.

By addressing the known risks effectively and only looking at the real critical vulnerabilities, you
achieve a higher pace of remediation and streamline the workflow between your engineering and
security teams, eventually decreasing technological debt.

In addition, while “freeing up the CPU” on the known risks side of things, you end up getting
more time to properly deal with the unknown risks - which, as a security professional, allows you
to prevent more security risks and do your job better.

By implementing these best practices, you can build a resilient software supply chain security
practice, one that's resistant to known and unknown threats, safeguarding your precious digital
assets and protecting your users from harm.

https://myrror.security/

myrror.security18 | Cheat Sheet

Conclusion

The ever-shifting realm of the software supply chain demands both
vigilance and strategic action. We've explored the landscape of known
risks as well as delved into the murky waters of the unknown risks in your
supply chain security.

By embracing robust security practices like binary-to-source analysis,
third-party risk management and incident response planning, we can
ensure that our software remains safe and secure - from all angles.

Remember, security is not a one-time endeavor, but an ongoing
journey. By consistently prioritizing proactive defense and embracing
the wisdom of "security first," we can build a future where software
development is synonymous with trust, resilience, and unwavering
protection.

https://myrror.security/

